Statistics

Spring 2023
Lecture 8

Feb 19-8:47 AM
Multiplication Rule:

1) Independent events

$$
P(A \text { and } B)=P(A) \cdot P(B)
$$

$$
\text { ex: } P(A)=.4, P(B)=.7, A \varepsilon B \text { are }
$$

$$
P(\bar{A})=1-P(A)=.6
$$

$$
P(\bar{B})=1-P(B)=.3
$$

$$
P(A \text { and } B)=P(A) \cdot P(B)=(.4)(.7)=.28
$$

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

$$
=.4+.7-.28=.82
$$

Venn Diagram
$.4-.28=.12$
$.7-.28=.42$
$P\left(\right.$ A only OR Bonly) $=.12+.42 \begin{array}{c}\text { Total }=1 \\ =.54\end{array}$

There are 5 Females and 7 males. we need to select 3 people
order does not matter.

1) How many ways can this be done?

$$
{ }_{12} C_{3}=220
$$

2) How many ways can be Select 3 females?

$$
{ }_{5}^{c_{3}} \cdot 7^{c_{0}}=10
$$

3) $P($ All Selections are females) $=$

$$
P(F F F)=\frac{{ }^{C_{3}} \cdot 7 C_{0}}{12 C_{3}}=\frac{10}{220}=\frac{1}{22}
$$

Sample Spare

FFF	$M F F$
FFM	$M F M$
FMF	$M M F$
	$M M M$

$$
\begin{gathered}
P(\text { at least } 1 \\
\text { EFF } \\
\begin{array}{c}
\text { some } F \\
\text { some }
\end{array} \\
M M M
\end{gathered}
$$

$$
P(\text { at least } 1 \text { male })=1-P(N 0 \text { wale })
$$

$$
\begin{aligned}
& \text { EFF } \\
& \begin{array}{c}
\text { some M } \\
\text { sin }
\end{array} \\
& M M M
\end{aligned} \quad=1-P \text { (All Females) }
$$

$$
\begin{aligned}
& P\left(2 \text { Females } \sum_{1} 1 M\right)=\frac{5^{C_{2} \cdot 7^{C}}{ }_{1}}{12^{C_{3}}}=\frac{70}{220}=\frac{7}{22} \\
& P(1 \text { Female } \dot{c} 2 \text { Males })=\frac{5^{C_{1}} \cdot 7^{c} c^{2}}{{ }_{12} C_{3}}=\frac{105}{220}=\frac{21}{44} \\
& P(\text { no females })=P(\text { All males })=\frac{5 C^{C} \cdot 7^{C} C_{3}}{1 C^{C}}=\frac{35}{220}=\frac{7}{44}
\end{aligned}
$$

$$
\begin{aligned}
& \text { clear all lists } \\
& \text { \# Females } \rightarrow L 1 \\
& P(\# \text { Females }) \rightarrow L 2 \\
& \text { use 1-Var stats with } \\
& \text { LI } \dot{L} L 2 \text { to find } \\
& \bar{x}=1.25 \\
& S=\text { blank } \\
& n=1
\end{aligned}
$$

Suppose There are 5 dimes $亠 10$ nickels.
Select a coins, No replacement.

$$
\begin{aligned}
& \text { DD } \\
& 20 \ddagger \\
& P(20 \$)=\frac{5}{15} \cdot \frac{4}{14}=\frac{2}{21} \\
& P(15 \$)=2 \cdot \frac{5}{15} \cdot \frac{10}{14}=\frac{10}{21} \\
& P(10 \$)=\frac{10}{15} \cdot \frac{9}{14}=\frac{3}{7}
\end{aligned}
$$

Total d $\mid P($ Total d) clear all lists

Mar 28-7:26 PM

Multiplication Rule:

$$
P(A \text { and } B)=P(A) \cdot P(B \mid A)
$$

A happens, then B happens
ex: Draw 2 cards from a full deck of playing cards without replacement.

$$
\begin{aligned}
& P\left(\text { both are } A(e s)=\frac{4}{52} \cdot \frac{3}{51}=\frac{1}{221}\right. \\
& P(\text { both are Fare Cards })=\frac{12}{52} \cdot \frac{11}{51}=\frac{11}{221}
\end{aligned}
$$

Suppose we draw 3 cards,

$$
P(\text { All Red Cards })=\frac{26}{52} \cdot \frac{25}{51} \cdot \frac{24}{50}=\frac{2}{17}
$$

A box has 3 red, 7 blue, and 10 white balls.
Take 3 balls, no replacement.

$$
\begin{aligned}
& P(\text { Red, Blue, then white })=\frac{3}{20} \cdot \frac{7}{19} \cdot \frac{10}{18} \\
& =\frac{7}{228} \\
& P(3 \operatorname{Red} \text { Balls })=\frac{3}{20} \cdot \frac{2}{19} \cdot \frac{1}{18}=\frac{1}{1140} \\
& P(\text { at least } 1 \text { Red })=1-P(\text { No Reds })
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { at least } 1 \text { Blue })=1-P(\text { NO Blue })
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{427}{570}
\end{aligned}
$$

Mar 28-7:42 PM

From multiplication rule

$$
P(A \text { and } B)=P(A) \cdot P(B \mid A)
$$

If we solve for $P(B \mid A)$, we get $P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}$ Conditional
ex: $P(A)=.8$

$$
\begin{aligned}
& P(B)=.7 \\
& P(A \text { and } B)=.6 \\
& P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}=\frac{.6}{.8}=.75 \\
& P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{.6}{.7}=.857
\end{aligned}
$$

$$
\begin{aligned}
& P(H B)=.6 \\
& P(F F)=.4 \\
& P(H B \text { and } F F)=.3 \\
& P(F F \mid H B)=\frac{P(H B \text { and } F F)}{P(H B)}=\frac{.3}{.6}=.5 \\
& P(H B \mid F F)=\frac{P(H B \text { and } F F)}{P(F F)}=\frac{.3}{.4}=.75
\end{aligned}
$$

Mar 28-8:08 PM

$$
\begin{array}{ll}
P(\text { math })=.5 & P(M \mid E)=\frac{P(M \text { and } E)}{P(E)} \\
P(\text { English })=.75 & .8=\frac{P(M \text { and } E)}{.75} \\
P(\text { Math | English })=.8 & \text { cross -Multiply } \\
P(\text { Math and English }) & P(M \text { and } E)=.6
\end{array}
$$

Mar 28-8:19 PM

$$
\begin{array}{lr}
P(\text { Math })=.4 & P(M \mid E)=\frac{P(M \text { and } E)}{P(E)} \\
P(\text { English })=.5 & .6=\frac{P(M \text { and } E)}{.5} \\
P(\text { Math } \mid \text { English })=.6 & P(M \text { and } E)=.3 \\
P(\text { Math and English }) \\
S G 133
\end{array}
$$

Complete the chart below:

x	$P(x)$	$x p(x)$	$x^{2} P(x)$	find
1	.2	.2	.2	$1) \sum p(x)=1$
2	.5	1.0	2.0	
3	.3	.9	2.7	$2) \sum x p(x)=2.1$

$$
\begin{aligned}
& \text { 4) Compute } \\
& \sum x^{2} p(x)-\left[\sum x p(x)\right]^{2}=\text { 3) } \sum x^{2} p(x)=4.9 \\
& 4.9-2.1^{2}=.49 \\
& \text { 5) } \sqrt{\text { last answer }}=\sqrt{.49}=.7
\end{aligned}
$$

Mar 28-8:28 PM

Complete the chart below:

x	$P(x)$	$x P(x)$	$x^{2} P(x)$
1	.1	.1	.1
2	.2	.4	.8
3	.3	.9	2.7
4	.4	1.6	6.4

1) $\sum P(x)=1$
2) $\sum x p(x)=3$
3) $\sum x^{2} p(x)=10$
4) Compute

$$
\begin{aligned}
& \sum x^{2} p(x)-\left[\sum x p(x)\right]^{2} \\
& =10-3^{2}=1
\end{aligned}
$$

5) Sind $\sqrt{\text { Last answer }}=\sqrt{1}=1$

$$
\text { Data }\left\{\begin{array}{l}
\text { 1) Qualitative } \\
\text { 2) Quantitative }\left\{\begin{array}{l}
\text { 1) Discrete } \\
\text { countable } \\
\text { (2) Continuous } \\
\text { Measureable }
\end{array}\right.
\end{array}\right.
$$

Let x be a discrete random variable with
Prob. dist. $P(x)$,
what is prob. dist.?
It is a way to give prob. of all possible outcomes.
It could be in form of

1) a table
2) formula
3) Graph
4) Basic concepts of prob.

Terms E. conditions for Prob. dist. PIx):

1) $0 \leq P(x) \leq 1$
2) Sum of all prob. is always 1.
3) $P(x)=1 \Longleftrightarrow$ Sure event
4) $P(x)=0 \Leftrightarrow$ Impossible event
5) $0<P(x) \leq .05 \Leftrightarrow$ Rare event

Mar 28-8:44 PM

Mean μ "mu"
Variance σ^{2} "Sigma"
Standard deviation σ "Sigma"

$$
\begin{aligned}
& \mu=\sum x p(x) \\
& \sigma^{2}=\sum x^{2} p(x)-\mu^{2} \\
& \sigma=\sqrt{\sigma^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Consider the chart below: } \\
& \begin{array}{c|c}
x & P(x) \\
\hline 1 & .12 \\
\hline 2 & .18 \\
\hline 3 & .35 \\
\hline 4 & .35
\end{array} \\
& \text { 1) verify } \sum P(x)=1 \\
& .12+.18+.35+.35=1 J \\
& \text { 2) Prob, dist. Histogram } \\
& \text { use } 1 \text { - Var Stats } \\
& \text { with LI है Le } \\
& \mu=\bar{x}=2.93 \quad \text { VARS 5: statistics } \\
& \sigma=\sqrt{x}=1.003 \\
& n=1 \sqrt{ } \\
& x \rightarrow L 1, P(x) \rightarrow L 2 \\
& \text { for } \sigma^{2} \\
& \text { 4: } \sigma_{x} \text { (x) MATH } \\
& \text { 1: Fac Enter } \\
& \sigma^{2}=1.0051 \\
& \frac{10051}{10000}
\end{aligned}
$$

Consider the chart below:

x	$P(x)$
1	.05
2	.15
3	.3
4	.4
5	.1

1) find $P(x=5)$
$=1-[.05+.15+.3+.4]$
$=.1$
2) $P(x=2$ or $x=4)=$ $.15+.4=.55$
3) Draw Prob. dist. Histogram.

$x \rightarrow L 1, P(x) \rightarrow L 2$
$\mu=\bar{x}=3.35$
Use 1 -Var Stats $\sigma=\sigma_{x}=1.014$ with L1 ह̇L2 to find $n=1 r \quad \sigma^{2}=\frac{411}{400}$ find σ^{2} in reduced fraction VARS $5:$ statistics $\left.\left.4: \sigma_{x}\right] x^{2}\right]$ Math $1:$ Antic

Application:
Expected Value $\rightarrow \mu \rightarrow \bar{x}$
40 TKts were sold for $\$ 10$ each.
One ticket is drown, owner of this ticket gets a call worth \$100.
Expected Valve per ticket.

Net	$P(N e t)$	
$10-100$	$1 / 40$	wiring
$10-0$	$39 / 40$	losing

$$
\text { Net } \rightarrow L 1
$$

$$
P(\mathrm{Net}) \rightarrow L 己
$$

1-Var Stats with LI ह, L2
Expected Valve $=\mu=\bar{x}$
$\$ 7.50 /$ KT

Mar 28-9:05 PM

You are taking a flight.
You pay $\$ 100$ for insurance to luggages.
Any damages, Airline pays you $\$ 1000$ $P($ damage $)=.5 \% \quad$ find expected Value Per Policy Sold.

Net	$P(\mathrm{Net})$	
$100-1000$	$.5 \%=.005$	Damage
$100-0$.995	No Damages

$$
\begin{aligned}
& \text { E.V. }=\mu=\bar{x}=95 \\
& S G 14 \text { \&G15 SG }
\end{aligned}
$$

